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The pyrimidine moiety is one of the most widespread
heterocycles in biologically occurring compounds, such as
nucleic acids and vitamin B1, and is an important constituent
of numerous drug molecules in many therapeutic areas.
Pyrimidine chemistry in solution is well-established.1 The
principal synthesis of pyrimidines consists of condensing
two-nitrogen-containing building blocks, for example,
amidines, guanidines, ureas, isoureas, thioureas, and isothio-
ureas, with 1,3-dielectrophilic three-carbon units. These
reactions typically proceed under alkaline conditions.

In recent years, considerable attention has been put into
developing solid-phase synthesis of pyrimidines and gen-
eration of pyrimidines-containing libraries. In the first
approach, this was achieved by condensation of amidines
with the support-bound dielectrophiles, such asR,â-un-
saturated ketones under air atmosphere,2a,b with the resin-
bound 2-methylene malonates, followed by oxidation of
dihydropyrimidines,2c with immobilized dialkylaminopro-
penones,2d,e cyclic malonate,2f and γ-ketosulfones.2g In the
last three cases, the products were released from the resin
during the condensation. The second approach was to use
polymer-bound thiouronium salts which were condensed
with acetylenic ketones,3a activated methylenemalono-
nitriles,3b â-ketoesters,3c and ethyl cyanoacetate and aromatic
aldehydes.3d

We have recently developed a solid-phase synthesis of
amidines from resin-bound nitriles through amidoximes.4 We
decided to explore their ability for further transformation into
2-alkyl- and 2-arylpyrimidines and 3H-pyrimidin-4-ones on
the solid phase. The support-bound 4-hydroxybenzamidine
(1a) and 2-(4-hydroxyphenyl)acetamidine (1b) were prepared
by first attaching 4-hydroxybenzonitrile and 4-hydroxybenzyl
cyanide to the Wang resin (0.9-1.1 mmol/g, 100-200 mesh;
Acros Organics) by Mitsunobu coupling. Nitriles were then
transformed into amidoximes by treatment with hydroxy-
lamine,5 and these were reduced to the support-bound
amidines1aand1b with tin(II) chloride (SnCl2‚2H2O). After
cleavage, the resin loadings of amidines were determined to
be 0.86 mmol/g for1a and 0.82 mmol/g for1b, and the
purities of the released products were 89% from1aand 87%
from 1b.

To establish the optimal reaction conditions for the solid-
phase conversion of amidines into pyrimidines, the conden-

sation of resin-bound 4-hydroxybenzamidine (1a) with ethyl
cyanoacetate was studied, as presented in Scheme 1 and
Table 2.

All reactions were carried out at 80°C and allowed to
proceed overnight. After washing, the product was cleaved,
and the ratio between 6-amino-2-(4-hydroxyphenyl)-3H-
pyrimidin-4-one (2a) and the parent 4-hydroxybenzamidine
was determined by HPLC and NMR. Under neutral condi-
tions using DMF or 2-methoxyethanol as solvent, essentially
no formation of product was observed. When potassiumtert-
butoxide was added as a base in DMF,∼20% of 2a was
formed. Using sodium methoxide as a base in 2-methoxy-
ethanol resulted in∼85% conversion, with 15% of amidine
unreacted. When both ethyl cyanoacetate and sodium meth-
oxide were added in a 20-fold excess, only a trace of parent
amidine was observed after cleavage.

These conditions were then applied to study condensa-
tions of resin-bound amidines1a and1b with a variety of
different 1,3-dielectophiles.6 The results are presented in
Table 2. Amidines were reacted with ethyl cyanoacetate,
ethyl acetoacetate (â-oxo ester), dimethyl methylmalonate
(â-diester), acetylacetaldehyde dimethylacetal (â-oxo alde-
hyde), and acetylacetone (â-diketone) to furnish structurally
diverse pyrimidines and 3H-pyrimidin-4-ones. Products were
generally obtained in high yield, and their purities were
comparable to those of parent amidines. The notable excep-
tion was the reaction of support-bound 2-(4-hydroxyphenyl)-
acetamidine (1b) with acetylacetone, which did not lead to
the expected 2,4-dimethylpyrimidine derivative. Under the
above-described reaction conditions, most of the amidine
remained unreacted. Though various reactions conditions
were applied (prolonged reaction time, higher temperature,
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Scheme 1.Condensation of1a with Ethyl Cyanoacetate

Table 1. Optimization of Condensation between
Resin-Bound 4-Hydroxybenzamidine (1a) and Ethyl
Cyanoacetate

solvent base equiva % conversion

DMF no base 10 no product
MeO(CH2)2OH no base 10 no product
DMF KOtBu 10 23
MeO(CH2)2OH NaOMe 10 85
MeO(CH2)2OH NaOMe 20 96

a Ethyl cyanoacetate and the base were added in a 1:1 ratio.
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milder base), complex mixtures of products and parent
amidine were usually obtained (results not shown). How-
ever, poor reactivity of longer chain amidines withâ-dike-
tones compared to other dielectrophiles has been docu-
mented.7

In conclusion, we have demonstrated that support-bound
amidines can be efficiently transformed into pyrimidines
and 3H-pyrimidin-4-ones on the solid phase in the presence
of sodium methoxide as a base. The same reaction condi-
tions can be applied to yield structurally diverse pyrimi-
dine derivatives. With numerous different 1,3-dielectro-
philes available, we believe the method can be used for
generating diverse pyrimidine-containing libraries. Since
the resulting pyrimidines remain attached to the resin,
their different substitution patterns should allow their
further transformations on the solid-support,8 which will be
studied.
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